

Copper-Catalyzed B—H Bond Insertion Reaction: A Highly Efficient and Enantioselective C—B Bond-Forming Reaction with Amine— Borane and Phosphine—Borane Adducts

Qing-Qing Cheng, Shou-Fei Zhu,* Yong-Zhen Zhang, Xiu-Lan Xie, and Qi-Lin Zhou*

State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China

Supporting Information

ABSTRACT: A copper-catalyzed B–H bond insertion reaction with amine– and phosphine–borane adducts was realized with high yield and enantioselectivity under mild reaction conditions. The B–H bond insertion reaction provides a new C–B bond-forming methodology and an efficient approach to chiral organoboron compounds.

O rganoboron compounds are widely used in modern organic synthesis, materials science, medicine, and other fields,¹ and the development of methodologies for the preparation of these compounds is an active, highly rewarding area of research. The most widely used method for constructing C–B bonds is Brown's hydroboration of olefins,² but several newer C–B bond-forming reactions have recently been developed. For example, the transition-metal-catalyzed hydroboration and boration of olefins using catecholborane, pinacolborane, and related biboranes are attractive routes for the formation of C–B bonds because the selectivity of these reactions can be controlled.³ In addition, remarkable progress has been made in the direct construction of C–B bonds through C–H bond activation.⁴

Transition-metal-catalyzed insertion of carbenes into heteroatom-hydrogen (X-H) bonds is an efficient strategy for the formation of heteroatom-carbon (C-X) bonds, and various catalytic carbene insertions into X-H bonds, including N-H, O-H, Si-H, and S-H bonds, have been achieved.⁵ However, the electron-deficient B-H bond does not readily undergo insertion with electron-deficient Fischer-type metal carbenes. Upon formation of an adduct with an amine or a phosphine, the B-H bond of borane becomes more electron-rich,⁶ which provides an opportunity to achieve B-H bond insertion with electron-deficient metal carbenes. For example, insertion of samarium carbenes into the B-H bond of phosphine-borane has been described,⁷ although a stoichiometric amount of samarium was needed. Here we report an efficient approach to organoborane compounds by means of copper-catalyzed carbene insertion into the B-H bonds of amine- and phosphine-borane adducts.⁸ The asymmetric version of this B-H insertion reaction was also achieved with high enantioselectivity.9

In the initial study, we conducted the reaction of methyl α diazophenylacetate **1a** with borane adducts in 1,2-dichloroethane (DCE) at 25 °C with Cu(MeCN)₄PF₆ as catalyst (Table 1). To our delight, easily accessible and highly stable amine-borane adduct **2a** and phosphine-borane adducts **2b**

Table 1. Catalytic B-H Bond Insertion Reactions:Optimization of Reaction Conditions a

Pr	$ \begin{array}{c} N_2 \\ $			$\frac{u(MeCN)_4PF_6}{Ph} \xrightarrow{Ph} OMe$			
	ⁿ Bu ₃ N → BH 2a	l ₃ Ph ₃ P- 2	►BH ₃ ″B b	Bu ₃ P → BH ₃ 2c	(MeO) ₃ P → 2d	BH₃	
entry	adduct	solvent	$T(^{\circ}C)$	time (h)	product	yield (%) ^b	
1	2a	DCE	25	24	3aa	83	
2	2b	DCE	25	18	3ab	80	
3	2c	DCE	25	14	3ac	87	
4	2d	DCE	25	12	3ad	trace	
5	2c	DCE	60	0.5	3ac	89	
6 ^{<i>c</i>}	2c	DCE	60	4	3ac	89	
7	2c	CHCl ₃	60	0.5	3ac	85	
8	2c	toluene	60	4	3ac	85	
9	2c	THF	60	12	3ac	73	
10^d	2c	DCE	60	0.5	3ac	81	
11^e	2c	DCE	60	2	3ac	81	
12 ^f	2c	DCE	60	0.5	3ac	82	

^{*a*}Reaction conditions: Cu(MeCN)₄PF₆/1a/2 = 0.01:0.2:0.4 (mmol), in 2 mL of solvent at specified temperature. ^{*b*}Isolated yield. ^{*c*}Using 2 mol% catalyst. ^{*d*}Using Cu(OTf)₂ as catalyst. ^{*e*}Using CuBr₂ as catalyst. ^{*f*}Using Rh₂(OAc)₄ as catalyst.

and 2c smoothly underwent the B-H insertion reaction to afford the desired products in good yields (entries 1-3). In terms of the reaction rate and yield, tri-n-butylphosphineborane adduct 2c, bearing an electron-rich and less-hindered phosphine group, was the best choice (entry 3). In contrast, phosphite-borane adduct 2d was less reactive (entry 4). BH₃. THF, BH₃·SMe₂, pinacolborane, and catecholborane afforded complicated product mixtures that did not contain any of the desired B-H insertion product (data not shown). Increasing the reaction temperature to 60 °C markedly shortened the reaction time (to 0.5 h) without compromising the yield (entry 5). Reducing the catalyst loading to 2 mol% gave the same yield, although a slightly longer reaction time was required (entry 6). Chloroform and toluene were also suitable solvents for this reaction, whereas THF lowered the reactivity (entries 7-9). Copper(II) salts, such as $Cu(OTf)_2$ and $CuBr_2$, gave

Received: August 10, 2013 Published: September 11, 2013 results similar to those obtained with $Cu(MeCN)_4PF_6$ (entries 10 and 11). A rhodium complex, $Rh_2(OAc)_4$, also efficiently catalyzed the insertion reaction in high yield (entry 12).

The copper-catalyzed B-H bond insertion reaction had a broad substrate scope (Table 2). All the tested α -aryl- α -

Table 2. Copper-Catalyzed B-H Bond Insertion Reactions: Substrate Scope^a

N ₂		5 mol% Cu(M	leCN)₄PF ₆	BHo
	+ ⁿ Bu₃P→BH	I ₃	0°C	
1	2c	, _		R'_ `R² 3
	X = H X = 2-CI X = 3-CI X = 4-CI .OMe X = 2-Me X = 3-Me X = 2-Me X = 3-Me X = 4-Me	$\begin{array}{c} 1a \\ 1b \\ 1c \\ 1d \\ 1e \\ 1f \\ 1g \\ 0.1h \\ Me \\ 0.1i \\ 0 \\ 0.1j \\ 1m \end{array}$	$ \begin{array}{c} N_2 \\ OBn \\ H \\ OBn \\ H \\ OBn \\ H \\ OBn $	N ₂ OMe 11 3n N ₂ Ph Me 0 10
entry	substrate	time (h)	product	yield (%)
1	1a	0.5	3ac	89
2	1b	0.5	3bc	93
3	1c	0.5	3cc	86
4	1d	1.5	3dc	88
5	1e	0.5	3ec	78
6	1f	0.5	3fc	83
7	1g	0.5	3gc	83
8	1h	1	3hc	76
9	1i	1	3ic	81
10	1j	0.5	3jc	82
11	1k	5	3kc	91
12	11	0.5	3lc	66
13	1m	0.5	3mc	80
14	1n	2	3nc	68
15	10	2	30c	71
^a Reaction co	nditions and	analysis were t	he same as the	ose of Table 1,

entry 5.

diazoacetates 1a-1j smoothly underwent reaction to afford the corresponding products in good to high yields (entries 1-10). Diazoesters 1e and 1h, which have 2-methyl and 2-methoxy substituents on their aryl rings, respectively, gave slightly lower yields (entries 5 and 8). α -Diazo- α -(2-naphthyl)acetate 1k afforded the insertion product in 91% yield, although a longer reaction time was required (entry 11). Heterocyclic diazoester 11 could also be used as the carbene precursor to afford the corresponding B-H insertion product in a reasonable yield (entry 12). α -Diazopropionate 1m, which has an α -alkyl group, exhibited a reaction rate and yield similar to those of α -arylsubstituted diazoesters (entry 13). Benzyl α -diazoacetate 1n underwent the B-H insertion reaction within 2 h to afford the desired product in 68% yield (entry 14). In addition to diazoesters, diazoketone 10 also showed reasonable reactivity in the reaction (entry 15).

We next investigated the asymmetric version of the coppercatalyzed B–H bond insertion reaction by using chiral spirobisoxazoline ligand ($R_{ar}S_rS$)-4a (Table 3).¹⁰ The steric properties of the phosphine markedly affected the enantioselectivity of the reaction, with less-hindered Me₂PH (2h) giving the best combination of yield and enantioselectivity (entries 1–5). Although phosphine–boranes 2e–2h have P–H bonds, no P–

 Table 3. Enantioselective Copper-Catalyzed B–H Bond

 Insertion Reactions: Optimization of Reaction Conditions^a

Ph 1	N ₂ OR + O or 5	X-→BH ₃ 2	5 mol% (6 mol% (6 mol%) CH ₂ Cl ₂ ,	Cu(MeCN) ₄ F <i>R_a,S,S</i>)- 4a NaBAr _F 25 °C	$rac{PF_6}{F_6}$ X BH $rac{Ph}{\star}$ Ph $rac{A}{\star}$ 3 or	OR OR 0 7 6
1a R = 1 1p R = ¹ 1q R = 1 1r R = 2 1s R = 2 5a R = 2	Me ['] Bu Ph 2,6- M e ₂ C ₆ H ₃ 2,6- [/] Pr ₂ C ₆ H ₃ 2,6-Cl ₂ C ₆ H ₃	2c X = ⁷ 2e X = ⁷ 2f X = ⁷ 2g X = ¹ 2h X = 1	′Bu ₃ P ′Bu ₂ PH ′BuPH ₂ Pr ₂ PH Me ₂ PH			a R' = Ph b R' = [/] Pr c R' = Bn
entry	diazoester	adduct	time (h)	product	yield $(\%)^b$	ee (%) ^c
1	1a	2c	5	3ac	84	16
2	1a	2e	5	3ae	89	57
3^d	1a	2f	12	3af	nd	nd
4	1a	2g	6	3ag	90	45
5	1a	2h	5	3ah	87	61
6	1p	2h	12	3ph	79	77
7	1q	2h	12	3qh	88	72
8	1r	2h	20	3rh	86	88
9	1s	2h	72	3sh	81	68
10	5a	2h	4	6ah	96	92
11^e	5a	2h	24	6ah	87	90
12^{f}	5a	2h	48	6ah	82	4
13 ^g	5a	2h	12	6ah	89	88
14^h	5a	2h	5	6ah	86	64
15 ^{<i>i</i>}	5a	2h	24	6ah	78	44
16 ^j	5a	2h	20	6ah	75	5

^{*a*}Reaction conditions: Cu(MeCN)₄PF₆/($R_{\omega}S_{\sigma}S$)-4a/NaBAr_F/diazoester/2 = 0.01:0.012:0.012:0.2:0.2 (mmol), in 2 mL of CH₂Cl₂ at 25 °C. ^{*b*}Isolated yield. ^{*c*}Determined by supercritical fluid chromatography. ^{*d*}The reaction was complicated, and no desired product was determined. ^{*e*}Using 1 mol% catalyst. ^{*f*}Using ($S_{\omega}S_{\sigma}S$)-4a as ligand. ^{*g*}Using ($R_{\omega}S_{\sigma}S$)-4b as ligand. ^{*h*}Using ($R_{\omega}S_{\sigma}S$)-4c as ligand. ^{*i*}Using ($S_{\sigma}S$)-Box as ligand. ^{*j*}Using ($S_{\sigma}S$)-Pybox as ligand.

H bond insertion product was detected in the reaction. The steric and electronic properties of the ester moiety of the diazoester also strongly affected the enantioselectivity of the reaction (entries 5–10). When 2,6-dichlorophenyl α -diazophenylacetate 5a was used instead of 1, the reaction was complete within 4 h, and the enantioselectivity improved to 92% ee (entry 10). The absolute configuration of the B–H bond insertion product was confirmed to be *R* by means of X-ray diffraction analysis of a single crystal of 6ah (Figure 1). Note that 1 mol% catalyst was sufficient to produce satisfactory results (entry 11).

Matching configurations of the spiro-bisoxazoline ligands was crucial for obtaining high enantioselectivity. In contrast to

Figure 1. Single-crystal structure of (R)-6ah.

 $(R_{\alpha'}S,S)$ -4a, $(S_{\alpha'}S,S)$ -4a afforded almost completely racemic product under identical reaction conditions (entry 12). The substituents on the oxazoline rings of ligand 4 also affected the reaction. $(R_{\alpha'}S,S)$ -4b, which has sterically hindered isopropyl groups, exhibited enantioselectivity similar to that of $(R_{\alpha'}S,S)$ -4a, but the reaction rate with the former was slightly lower than that with the latter (entry 13 vs entry 10). In contrast, benzylsubstituted bisoxazoline ligand $(R_{\alpha'}S,S)$ -4c exhibited markedly lower enantioselectivity (64% ee, entry 14). The structure of the spiro ligand backbone played an important role in the enantiocontrol of the reaction: bisoxazoline ligands 2,2'-(propane-2,2-diyl)bis(4-*tert*-butyl-4,5-dihydrooxazole) [(*S*,*S*)-Box] and 2,6-bis(4-phenyl-4,5-dihydrooxazol-2-yl)pyridine [(*S*,*S*)-Pybox] showed very low enantioselectivities (entries 15 and 16).

We next investigated various α -diazoesters with a 2,6dichlorophenyl ester moiety in the copper-catalyzed asymmetric B–H insertion reaction (Table 4). The reactions of all

Table 4. Enantioselective Copper-Catalyzed B-H BondInsertion Reactions: Substrate Scopes a

Ar Ar		5 mol% Cu(MeCN) ₄ PF ₆ 6 mol% (<i>R_a</i> , <i>S</i> , <i>S</i>)- 4a 6 mol% NaBAr _F		Me ₂ HP BH ₂	,o
	Ö Cl F Me2HF BH3 5 2h	CH2Cl2, 25 ℃	;	6	cı 🦯
entr	y Ar	time (h)	6	yield (%)	ee (%)
1	Ph (5a)	4	6ah	96	92
2	$4-ClC_{6}H_{4}$ (5b)	7	6bh	96	93
3	$4\text{-PhC}_{6}\text{H}_{4}$ (5c)	4	6ch	91	92
4	$4-MeC_{6}H_{4}$ (5d)	4	6dh	96	91
5	$4\text{-MeOC}_{6}\text{H}_{4}$ (5e)	4	6eh	92	91
6	$3-ClC_{6}H_{4}$ (5f)	7	6fh	96	94
7	3-MeC ₆ H ₄ (5g)	4	6gh	96	93
8	$3-MeOC_{6}H_{4}$ (5h)	8	6hh	94	92
9	2-ClC ₆ H ₄ (5i)	15	6ih	94	94
10^{l}	2-MeC ₆ H ₄ (5j)	20	6jh	92	94
11	$3,4-O_2CH_2C_6H_3$ (5k)	6	6kh	86	91
12	2-naphthyl (51)	4	6lh	91	92
^a Rea	ction conditions and anal	ysis were th	e same a	as those of	Table 3,

entry 10. ^bUsing 10 mol% catalyst.

the tested diazo compounds exhibited high yields (86-96%) and enantioselectivities (91-94% ee) under the standard reaction conditions. The electronic and steric properties of the aryl substituents of the diazo compounds had a negligible influence on the enantioselectivity, but substituents at the 2-position of the aryl group of the substrate slowed the reaction (entries 9 and 10).

To demonstrate the synthetic utility of the B–H bond insertion reaction, we transformed **6ah** in high yield in two steps to protected β -hydroxy pinacolborane **8**, a β -functionalized borate that can be expected to find wide application in organic synthesis (Scheme 1).

Scheme 1. Product Transformations

We performed an isotope effect experiment (Scheme 2). The small isotope effects ($k_{\rm H}/k_{\rm D}$ = 1.17) that were observed both at

Scheme 2. Isotope Effect Experiments

room temperature and at 60 °C imply that neither B–H bond cleavage nor C–H bond formation was likely to have been involved in the rate-limiting step. By analogy with Si–H and C–H bond insertion reactions,¹¹ we propose a B–H bond insertion mechanism shown in Scheme 3. The diazo group

Scheme 3. Proposed B-H Insertion Mechanism

generates the copper carbene II, which inserts into the B-H bond of the amine- or phosphine-borane adduct in a concerted manner via transition state **TS**. We are currently conducting a detailed study of the B-H insertion mechanism in our laboratory.

In summary, we developed a copper-catalyzed B–H bond insertion reaction. This B–H activation strategy permitted the synthesis of organoboron compounds from easily accessible and highly stable amine– or phosphine–borane adducts under mild reaction conditions in high yields. This transition-metalcatalyzed C–B bond-forming reaction also allowed the efficient synthesis of chiral organoboranes.

ASSOCIATED CONTENT

S Supporting Information

Experimental procedures and characterization data, including CIF data for **6ah**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors sfzhu@nankai.edu.cn qlzhou@nankai.edu.cn

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of China and the National Basic Research Program of China (2012CB821600), the "111" project (B06005) of the Ministry of Education of China, and the Program for New Century Excellent Talents in University (NCET-10-0516) for financial support.

REFERENCES

(1) (a) Organoboranes for Syntheses; Ramachandran, P. V., Brown, H. C., Eds.; ACS Symposium Series 783; American Chemical Society: Washington, DC, 2001. (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (c) Soloway, A. H.; Tjarks, W.; Barnum, B. A.; Rong, F.-G.; Barth, R. F.; Codogni, I. W.; Wilson, J. G. Chem. Rev. 1998, 98, 1515. (d) Ollivier, C.; Renaud, P. Chem. Rev. 2001, 101, 3415. (e) Jäkle, F. Chem. Rev. 2010, 110, 3985.

(2) Brown, H. C. Science 1980, 210, 485.

(3) For reviews, see: (a) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179. (b) Beletskaya, I.; Moberg, C. Chem. Rev. 2006, 106, 2320. For recent examples, see: (c) Wu, J. Y.; Moreau, B.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 12915. (d) Ely, R. J.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 2534. (e) Iwadate, N.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 2548. (f) Jang, H.; Zhugralin, A. R.; Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 7859.

(4) For a review, see: (a) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. For selected examples, see: (b) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science 2000, 287, 1995. (c) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E., Jr.; Smith, M. R., III Science 2002, 295, 305. (d) Liskey, C. W.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 12422. (e) Kawamorita, S.; Miyazaki, T.; Iwai, T.; Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc. 2012, 134, 12924. (f) Ohmura, T.; Torigoe, T.; Suginome, M. J. Am. Chem. Soc. 2012, 134, 17416. (g) Preshlock, S. M.; Ghaffari, B.; Maligres, P. E.; Krska, S. W.; Maleczka, R. E., Jr.; Smith, M. R., III J. Am. Chem. Soc. 2013, 135, 7572.

(5) For reviews, see: (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; Wiley: New York, 1998. (b) Moody, C. J. Angew. Chem., Int. Ed. 2007, 46, 9148. (c) Zhang, Z.-H.; Wang, J.-B. Tetrahedron 2008, 64, 6577. (d) Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2012, 45, 1365. For selected examples, see: (e) Maier, T. C.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 4594. (f) Liu, B.; Zhu, S.-F.; Zhang, W.; Chen, C.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 5834. (g) Zhang, Y.-Z.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2008, 47, 8496. (h) Yasutomi, Y.; Suematsu, H.; Katsuki, T. J. Am. Chem. Soc. 2010, 132, 4510. (i) Hou, Z.-R.; Wang, J.; He, P.; Wang, J.; Qin, B.; Liu, X.-H.; Lin, L.-L.; Feng, X.-M. Angew. Chem., Int. Ed. 2010, 49, 4763. (j) Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L. Nature Chem. 2010, 2, 546.

(6) For preparation and applications of amine- and phosphineborane adducts, see: (a) Carboni, B.; Monnier, L. *Tetrahedron* **1999**, 55, 1197. (b) Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I. *Chem. Rev.* **2010**, *110*, 4023.

(7) (a) Imamoto, T.; Yamanoi, Y. Chem. Lett. **1996**, 705. For B–H insertions of amine– or phosphine–borane adducts with free dichlorocarbene, see: (b) Bedel, C.; Foucaud, A. Tetrahedron Lett. **1993**, 34, 311. (c) Monnier, L.; Delcros, J.-G.; Carboni, B. Tetrahedron **2000**, 56, 6039. For other insertion reactions of electron-rich B–H bonds, see: (d) Zheng, G.-X.; Jones, M., Jr. J. Am. Chem. Soc. **1983**, 105, 6487. (e) Ramírez-López, P.; Sierra, M. A.; Gómez-Gallego, M.; Mancheño, M. J.; Gornitzka, H. Organometallics **2003**, 22, 5092.

(8) During the preparation of this manuscript, a rhodium-catalyzed carbene insertion into B–H bonds of *N*-heterocyclic carbene boranes was reported: Li, X.; Curran, D. P. J. Am. Chem. Soc. **2013**, 135, 12076.

(9) For reviews on other catalytic enantioselective hydroboration and boration reactions, see: (a) Carroll, A.-M.; O'Sullivan, T. P.; Guiry, P. J. Adv. Synth. Catal. 2005, 347, 609. (b) Burks, H. E.; Morken, J. P. Chem. Commun. 2007, 4717. For recent examples, see: (c) Noh, D.; Chea, H.; Ju, J.; Yun, J. Angew. Chem., Int. Ed. 2009, 48, 6062. (d) Lee, J.; Ch, H.; McDonald, R.; Hall, D. G. Nature Chem. 2011, 3, 894. (e) Wu, H.; Radomkit, S.; O'Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 8277. (f) Toure, M.; Chuzel, O.; Parrain, J.-L. J. Am. Chem. Soc. 2012, 134, 17892. (g) Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. 2013, 135, 11222.

(10) For preparation of ligand 4, see: Liu, B.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L. *Tetrahedron: Asymmetry* **2006**, *17*, 634.

(11) (a) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. (b) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704 and references therein.